High Gain Helical WiFi Antenna
Article Index --- click here to unfold --- NEW: Roberta Flack Awakens Apollo 17
NEW: Choose Your USB Podcast Microphone
UPDATED:How To Record Record Live Music Performances
NEW: Windows 10 Debloating 2021
NEW: Windows 10 Performance with CPU Upgrade
NEW: Windows 10 Performance with RAM Upgrade
NEW: Texas is the Valu-Jet of States
NEW: Ubuntu PPAs for Alacritty | Linux
NEW: Trumpists Kicking the Hornets Nest
NEW: Introduction to Catbird Linux
Skywave Linux Updated to ver 4.1
i3wm: Using i3-ipc to Float Windows | Linux
4G WiFi Router Instead of Wifi Extender
4G WiFi Hotspot Instead of Wifi Extender
MOFO Linux - For Unrestricted Internet
How to Record from WebSDR and OpenWebRX Sites | Digital Audio
Wifi 6 Upgrade: TP Link Deco X90
Wifi 6 Upgrade: Netgear Orbi RBK852 Whole Home Mesh WiFi
Podcaster Microphone: iRig Mic HD 2
Podcaster Microphone: JLab Audio Talk Pro
Podcaster Microphone: Blue Yeti Pro
Programmatic RTL-SDR Frequency Claibration | Software Defined Radio
Public KiwiSDR Lists | Sotware Defined Radio
Malaysia Airlines Flight MH17: Simply Mass Murder
The Anonymous Cathay Pacific Employee Letter to Hong Kong
For For Cathay Crews Crossing Borders With Electronics
E Pluribus Unum: From Many, One, Dammit
HFGCS Quick Tune SDR List | Software Defined Radio
The Robert Mueller Iron Triangle Speech
A Rant About One Party Rule
Best OpenWebRX and WebSDR Servers | Software Defined Radio
SDR School via YouTube | Software Defined Radio
ADALM-PlutoSDR on Linux Systems | Software Defined Radio
Skywave Linux: HPSDR, WebSDR, and RTL-SDR ready to run | Linux
Siduction Linux with the Cinnamon Desktop | Linux"
Siduction Linux with the LXQT Desktop | Linux
Andy's Ham Radio Linux 15 and QtRadio | Linux
Booting Multiple Linux Disc Images with Grub2 | Linux
Porteus Linux Hard Drive Installation | Linux
Aptosid with LXDE | Linux
Asus EeePC 1215N with Linux | Linux
Autostart Tweaks for KDE3 and KDE4 | Linux
Broadband Speed Tweaks For Linux | Linux
Fixing the Firefox 3 Rendering Bug | Linux
Linux on Solid State Drives | Linux
Linux Wireless Interface Driver Updates | Linux
Setting Polkit to Automount USB Devices | Linux
Sidux with LXDE | Linux
Fixing Skype Inverted Video | Linux
SLAX Remix - kernel upgrades | Linux
Flash Drive Linux - Introduction | Linux
Flash Drive Knoppix 5.3 - Part 1 | Linux
Flash Drive Knoppix 5.3 - Part 2 | Linux
Flash Drive Knoppix 6.0 - Part 1 | Linux
Flash Drive Knoppix 6.0 - Part 2 | Linux
Flash Drive SLAX - Part 1 | Linux
Flash Drive SLAX - Part 2 | Linux
Flash Drive Bluewhite64 - Part 1 | Linux
Flash Drive Bluewhite64 - Part 2 | Linux
Flash Drive Linux - Basic Customization | Linux
SLAX Customization - Part 1 | Linux
SLAX Customization - Part 2 | Linux
Bluewhite64 Customization - Part 1 | Linux
Bluewhite64 Customization - Part 2 | Linux
Basics of Long Range Wireless Networking
Linear Focus Parabolic Wi Fi Antenna
High Gain Wi Fi Dish Antenna
High Gain Helical Wi Fi Antenna
High Gain Yagi Wi Fi Antenna
High Power Wireless Adapters
Wi Fi Extender Antenna for Routers
Belkin F5D7050 External Wi Fi Antenna
Linksys WUSB54GC External Antenna Mod
Compat Wireless Linux Drivers
Installing WPA_Supplicant for Wi-Fi Security
Linux Wireless Interface Driver Updates
Linux Wireless Interface Driver Support
NetworkManager and Consolekit
RT73 Wireless Drivers for Linux Kernel 2.6.27+
RT2860 Wireless Drivers for Linux Kernel 2.6.27+
Best OpenWebRX and WebSDR Servers
Skywave Linux: HPSDR, WebSDR, and RTL-SDR ready to run.
CubicSDR on Debian, Ubuntu, and Linux Mint | Software Defined Radio
Dump1090 for Linux Mint 17.1 and Siduction 2014.1 | Software Defined Radio
Software Defined Radio - An Introduction | Software Defined Radio
QS1R Direct Sampling SDR | Software Defined Radio
Chaining SDR Audio Interfaces | Software Defined Radio
FLEX-6000 Direct Sampling SDR | Software Defined Radio
RTL2832 Software Defined Radio | Software Defined Radio
WebSDR Digimode Reception | Software Defined Radio
Enabling FLASH in Jack Audio | Digital Audio in Linux
Realtime Software Audio Processing | Digital Audio in Linux
Veracrypt Encryption for Linux
Veracrypt Encryption for Windows
Using Google Within China
Popcorn Time and Flixtor for Uncensored Streaming Media
DNS Encryption using DNSCrypt
Galaxy Nexus Privacy and Robustness Enhancements
Galaxy SIII Privacy and Robustness Enhancements
Flash Drive Encryption for Linux
Flash Drive Encryption for Windows
Multihop VPN Connections for Strong Internet Privacy
Open and Free DNS Server List
OpenVPN Cloaking against Deep Packet Inspection The Serval Mesh Phone Project
Skype's Robust Security
Man in the Middle Wireless Security Risks
Wireless Security and Surveillance
Adjusting Audio Dynamics in VLC
Backing Track Prep Guide
Ipod Music Processing Guide
How To Record Record Live Music Performances
Realtime Software Audio Processing
Chaining SDR Audio Interfaces
Captains Authority Versus Autocratic Airline Management
Malaysia Airlines Flight MH370 - A Media Circus
High Gain Air Band Antennas
Apollo Unified S Band Communications
Chinese Anti-Stealth VHF Radar
Oceanic Communications - Procedures, Equipment, Voice and HFDL
Boeing 737NG Radio Equipment
Boeing 767 Radio Equipment
NAOC-TACAMO Monitoring
My Flight on 9/11
Joshua Chamberlain's Leadership Tips
Special Operations Forces Truths
TWA 800: Just Give Me Some Truth
BBC Radio Blooper - Adolf Merckle
TV DXing the World Trade Center
New York TV after 9/11
Adjusting Audio Dynamics in VLC
Backing Track Prep Guide
Ipod Music Processing Guide
In Distress, by David Wagoner
Just A Radio Operator, by Robert A. Wallace
ATS-909 Modifications
ATS-909 Manuals
ATS-909 Alignment Procedure
ATS-909 Alignment Spectrograms
Internet Based VLF Radio Listening
Windows Performance Enhancement Tips
A Faster Windows 7
Windows 7 SSD Setup

Photo Galleries
Aviation Photo Gallery 1: Snapshots From My Journeys
Aviation Photo Gallery 2: On the Road With ATA Airlines
Aviation Photo Gallery 3: More ATA Airlines
Aviation Photo Gallery 4: Southwest Airlines is the Borg Empire
Aviation Photo Gallery 5: Starting Over, Moving On...
Aviation Photo Gallery 6: More Viva Macau
Aviation Photo Gallery 7: Mainland China Airline Flying
Aviation Photo Gallery 8: Chinese Smog and Fog
Photo Gallery 9: The New Life Movement in China, 1944
Disclosure: AB9IL.net is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program such that this site earns advertising fees by linking to Amazon.com. If you make a qualifying purchase after clicking a link on this website, the associate affiliated with this site may earn a comission at no cost to you.

Boost your wifi with this unique wifi antenna that can greatly extend your wireless networking range and speed. When built with ten or more turns, this helical wifi antenna vastly outperforms the cantennas and wi fi wok tops often seen on the internet. A short five turn helical makes a very good feeder for a wifi parabolic dish antenna. A special quality of this antenna is that it radiates and receives a circularly polarized signal. It does not favor vertically or horizontally polarized signals. Thus, this antenna works well with wifi signals reflecting off of buildings, moving vehicles, or antennas oriented at odd angles. Circularly polarized signals are less affected by rain, so you can reach distant access points in stormy weather. There is a 3 dB loss of gain when using this antenna with linearly polarized signals; high gain is maintained by making the antenna long - at least ten turns for stand-alone usage.

Before we get into the antennas, consider a wireless bridge first. If your goal is to transfer wireless internet from another building and use it indoors, you should instead use a wireless bridge. If you want to provde STRONG wireless internet coverage to an area, but cannot provide a fiber optic or ethernet cable to your wireless router, again consider using a wireless bridge to substitute for the unavailable cable, and connect the bridge to the router. A wireless bridge is a better solution for situations such as:

Wireless bridges work like a long run of ethernet without cable...

  • Providing internet connectivity from one building to users in a remote house or office.
  • Providing internet connectivity from one highrise building to another across town.
  • Providing internet connectivity from an onshore location to users on an island.
  • Sharing connectivity between two locations which can't be linked by cable.

#Advert: Extend your wifi TODAY with a WIRELESS BRIDGE!

Design parameters for this helical wifi antenna were calculated using the online helical antenna calculator and was inspired by similar designs used for the AMSAT OSCAR 40 satellite.


  1. one square piece of copper sheet metal or single sided PC board for a ground plane.
  2. one PVC kitchen drain tailpiece (3.8 cm / 1.5" diameter) to hold the helical windings
  3. six 1/8" plastic cable ties
  4. a length of copper circuit tape (adhesive backed, width 3mm or 1/8") or #14 copper wire
  5. one suitable chassis connector (I used a reverse sma type matching the connector on my adaptor)
  6. one 90 degree angle bracket with screws and bolts to fit


  1. Center the tailpiece on the PC board, copper side, and mark the circumference in ink.
  2. Mark four locations on the circumference, spaced 90 degrees, where the cable ties will hold down the PVC tube.
  3. Mark one location on the circumference, exactly between two 90 degree markings, where the coaxial connector will be mounted.

helical wifi Antenna, parabolic wifi booster antenna

At this point you should have a PC board with a circle in the center, four tick marks on the circle at 90 deg intervals, and one tick mark exactly between two others.

  1. Drill 1/8" holes on the inside and outside of the circumference at the cable tie locations.
  2. Drill a hole directly on the circumference suitable for the chassis connector. Carefully measure and drill other holes for this connector if necessary.
  3. Drill four holes, spaced 90 deg apart near the bottom end of the PVC tailpiece.
  4. Drill holes to accomodate a small 90 degree corner bracket.
  5. Drill holes on opposite side of board to accomodate USB wifi adapter that will be affixed with cable ties.
  6. Tin the copper around the connector mounting hole, then mount the connector. Clip the center pin to keep it only long enough for connection to the helix windings.
  7. Cut out a notch to accomodate the connector; it should clear center conductor, but avoud cutting out excess PVC material.
  8. Feed cable ties through from the back side of the board, through holes in the tube, and back through the board. Tighten the cable ties, making sure the tube is firmly held to the copper ground plane.
  9. Use a ruler and the edge of a sheet of paper to create a template for positioning the windings on the PVC tube. Distance zero represents the ground plane, then add the feedpoint distance, then ticks matching the turns spacing. Use the template to mark your tube on both the feedpoint side and the opposite side.

  10. The objective is to precisely wind the helical wifi antenna using an accurate guide...

helical wifi Antenna, parabolic wifi booster antenna
Space the turns 2.5 cm on a
tube of 3.9cm outer diameter.

Here is a table used for my prototype helical wifi antenna and its connector. Note that turn 1 starts at 0.8 cm (height above ground plane of feedpoint). Turns Spacing is 2.5 cm, and the diameter is 3.9 cm (close enough for 1.5" PVC tailpiece). If your connector can be trimmed to allow a feed connection closer to the ground plane than 0.8CM, then simply run the helix as low as necessary. Most impartant is keeping the proper spacing between turns.

(fits 1.5" PVC tailpiece)
Turn # Height (cm) above
Half Turns
Height (cm)
1 (feedpoint) 0.8 2.05
2 3.3 4.55
3 5.8 7.05
4 8.3 9.55
5 10.8 12.05
6 13.3 14.55
7 15.8 17.05
8 18.3 19.55
9 20.8 22.05
10 23.3 24.55
11 25.8 27.05
12 28.3 29.55
13 30.8 32.05

  1. Carefully wind the helix, using circuit tape or wire, then solder to center conductor of chassis connector. Double check against the turns template. Polarization will be right-handed if the turns spiral clockwise (looking outward from feedpoint).

high gain helical wifi Antenna, high gain parabolic wifi antenna, wifi dish

  1. Attach the angle bracket and wi-fi adapter, making sure all parts are secure and ready for service, as seen in the images below.

high gain helical wifi booster Antenna, high gain parabolic wifi antenna,  wifi dish
The high gain wifi helical antenna.
10 turn stand alone version

high gain helical wifi Antenna, high gain parabolic wifi antenna,  wifi dish
Cable losses avoided by
mounting wifi adapter
at base of antenna.

high gain helical wifi booster Antenna, high gain parabolic wifi antenna,  wifi dish
Short wifi helix feeding a long range parabolic wi-fi

At this point, helical wifi antenna is ready for its smoke test...plug in the cables and look for some signals! Theoretical gain of the prototype helical was about 18 dB over an isotropic radiator; it beat my biquad by about 7 to 13 RSSI units, and indeed seemed less sensitive to polarization and rainfall. Signals still seem to fluctuate much from second to second. If your antenna is functioning satisfactorily at this point, I suggest spray painting three layers of clearcoat onto the windings and groundplane for stability and corrosion prevention.

Tags: Wifi antenna, wifi extender, wifi booster

©2005 - 2021 AB9IL, All Rights Reserved.
About, Contact, Privacy Policy and Affiliate Disclosure, XML Sitemap.