RTL2832 Software Defined Radio

Disclosure: AB9IL.net is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program such that this site earns advertising fees by linking to Amazon.com. If you make a qualifying purchase after clicking a link on this website, the associate affiliated with this site may earn a comission at no cost to you.

#Advert: Supercharge your computing on systems and parts from Prostar

New Features: Global Quick Tune Internet SDR List Improve Your Radio Knowledge at "YouTube SDR School"
Article Index --- click here to unfold ---
Newest Pages NEW: Ubuntu PPAs for Alacritty
NEW: Trumpists Kicking the Hornets Nest
NEW: Introduction to Catbird Linux
NEW: Skywave Linux Updated to ver 4.1
i3wm: Using i3-ipc to Float Windows
How to Record from WebSDR and OpenWebRX Sites
Programmatic RTL-SDR Frequency Claibration
Public KiwiSDR Lists
Malaysia Airlines Flight MH17: Simply Mass Murder
The Anonymous Cathay Pacific Employee Letter to Hong Kong
For For Cathay Crews Crossing Borders With Electronics
Photo Gallery 9: The New Life Movement in China, 1944
E Pluribus Unum: From Many, One, Dammit
HFGCS Quick Tune SDR List
The Robert Mueller Iron Triangle Speech
A Rant About One Party Rule
Best OpenWebRX and WebSDR Servers
SDR School via YouTube
ADALM-PlutoSDR on Linux Systems
MOFO Linux: Defeating State Censorship and Surveillance
Linux: Distros, Code, and Nifty Software NEW: Introduction to Catbird Linux
NEW: Skywave Linux Updated to ver 4.1
NEW: i3wm: Using i3-ipc to Float Windows
Skywave Linux: HPSDR, WebSDR, and RTL-SDR ready to run.
Siduction Linux with the Cinnamon Desktop
Siduction Linux with the LXQT Desktop
Andy's Ham Radio Linux 15 and QtRadio
Booting Multiple Linux Disc Images with Grub2
Porteus Linux Hard Drive Installation
UPDATED: MOFO Linux - For Unrestricted Internet
Aptosid with LXDE
Asus EeePC 1215N with Linux
Autostart Tweaks for KDE3 and KDE4
Broadband Speed Tweaks For Linux
Fixing the Firefox 3 Rendering Bug
Linux on Solid State Drives
Linux Wireless Interface Driver Updates
Setting Polkit to Automount USB Devices
Sidux with LXDE
Fixing Skype Inverted Video
SLAX Remix - kernel upgrades
Flash Drive Linux - Introduction
Flash Drive Knoppix 5.3 - Part 1
Flash Drive Knoppix 5.3 - Part 2
Flash Drive Knoppix 6.0 - Part 1
Flash Drive Knoppix 6.0 - Part 2
Flash Drive SLAX - Part 1
Flash Drive SLAX - Part 2
Flash Drive Bluewhite64 - Part 1
Flash Drive Bluewhite64 - Part 2
Flash Drive Linux - Basic Customization
SLAX Customization - Part 1
SLAX Customization - Part 2
Bluewhite64 Customization - Part 1
Bluewhite64 Customization - Part 2
Long Range Wi-Fi Basics of Long Range Wireless Networking
Linear Focus Parabolic Wi Fi Antenna
High Gain Wi Fi Dish Antenna
High Gain Helical Wi Fi Antenna
High Gain Yagi Wi Fi Antenna
High Power Wireless Adapters
Wi Fi Extender Antenna for Routers
Belkin F5D7050 External Wi Fi Antenna
Linksys WUSB54GC External Antenna Mod
Compat Wireless Linux Drivers
Installing WPA_Supplicant for Wi-Fi Security
Linux Wireless Interface Driver Updates
Linux Wireless Interface Driver Support
NetworkManager and Consolekit
RT73 Wireless Drivers for Linux Kernel 2.6.27+
RT2860 Wireless Drivers for Linux Kernel 2.6.27+
Radio: Amateur Radio, Aero Radio, Shortwave, etc NEW: Programmatic RTL-SDR Frequency Claibration
NEW: Public KiwiSDR Lists
NEW: GHFS Quick Tune SDR List
UPDATED: Best OpenWebRX and WebSDR Servers
UPDATED: Skywave Linux: HPSDR, WebSDR, and RTL-SDR ready to run.
CubicSDR on Debian, Ubuntu, and Linux Mint
Dump1090 for Linux Mint 17.1 and Siduction 2014.1
Software Defined Radio - An Introduction
QS1R Direct Sampling SDR
Chaining SDR Audio Interfaces
FLEX-6000 Direct Sampling SDR
UPDATED: RTL2832 Software Defined Radio
WebSDR Digimode Reception
Enabling FLASH in Jack Audio
Realtime Software Audio Processing
Liberation Technology MOFO Linux - For Unrestricted Internet
Veracrypt Encryption for Linux
Veracrypt Encryption for Windows
Using Google Within China
Popcorn Time and Flixtor for Uncensored Streaming Media
DNS Encryption using DNSCrypt
Galaxy Nexus Privacy and Robustness Enhancements
Galaxy SIII Privacy and Robustness Enhancements
Flash Drive Encryption for Linux
Flash Drive Encryption for Windows
Multihop VPN Connections for Strong Internet Privacy
Open and Free DNS Server List
OpenVPN Cloaking against Deep Packet Inspection The Serval Mesh Phone Project
Skype's Robust Security
Man in the Middle Wireless Security Risks
Wireless Security and Surveillance
Digital Audio Adjusting Audio Dynamics in VLC
Backing Track Prep Guide
Ipod Music Processing Guide
How To Record Record Live Music Performances
Realtime Software Audio Processing
Chaining SDR Audio Interfaces
Aerospace Radio, Aviation, Pontification, and Opinion NEW: Trumpists Kicking the Hornets Nest
NEW: The Anonymous Cathay Pacific Employee Letter to Hong Kong
NEW: For For Cathay Crews Crossing Borders With Electronics
NEW: E Pluribus Unum: From Many, One, Dammit
NEW: HFGCS Quick Tune SDR List
NEW: The Robert Mueller Iron Triangle Speech
NEW: A Rant About One Party Rule
Captains Authority Versus Autocratic Airline Management
Malaysia Airlines Flight MH17: Simply Mass Murder
Malaysia Airlines Flight MH370 - A Media Circus
High Gain Air Band Antennas
Apollo Unified S Band Communications
Chinese Anti-Stealth VHF Radar
Oceanic Communications - Procedures, Equipment, Voice and HFDL
Boeing 737NG Radio Equipment
Boeing 767 Radio Equipment
NAOC-TACAMO Monitoring
My Flight on 9/11
Joshua Chamberlain's Leadership Tips
Special Operations Forces Truths
TWA 800: Just Give Me Some Truth
Photo Gallery Aviation Photo Gallery 1: Snapshots From My Journeys
Aviation Photo Gallery 2: On the Road With ATA Airlines
Aviation Photo Gallery 3: More ATA Airlines
Aviation Photo Gallery 4: Southwest Airlines is the Borg Empire
Aviation Photo Gallery 5: Starting Over, Moving On...
Aviation Photo Gallery 6: More Viva Macau
Aviation Photo Gallery 7: Mainland China Airline Flying
Aviation Photo Gallery 8: Chinese Smog and Fog
NEW: Photo Gallery 9: The New Life Movement in China, 1944
Broadcasting BBC Radio Blooper - Adolf Merckle
TV DXing the World Trade Center
New York TV after 9/11
Live Music Recording Adjusting Audio Dynamics in VLC
Backing Track Prep Guide
Ipod Music Processing Guide
How To Record Record Live Music Performances
Radio Poetry and Arts In Distress, by David Wagoner
Just A Radio Operator, by Robert A. Wallace
Radio Circuit Modifications ATS-909 Modifications
ATS-909 Manuals
ATS-909 Alignment Procedure
ATS-909 Alignment Spectrograms
Very Low Frequency (VLF) Radio Internet Based VLF Radio Listening
Windows Tips Windows Performance Enhancement Tips
A Faster Windows 7
Windows 7 SSD Setup

Updated 05/30/2017: SDRplay


HF Reception
Reception Improvement Suggestions
Filtering USB Cable Noise
FM Band-Stop Filters
Remote Client-Server Operation
RTL-SDR on Windows
RTL-SDR on Linux
RTL-SDR on Android
ADS-B Aircraft Tracking
AIS Ship Tracking
Skimmers:  Simultaneous Multi-Frequency Monitoring
Higher Performance SDR Hardware

Software defined radio (SDR) hardware is becoming smaller AND more capable. For many years, the king of small SDRs was the Softrock Radio. With a combination of surface mount and conventional discrete components, it offered high performance,small size, and low power consumption. Miniaturization took a large leap ahead in mid 2010 when the Funcube Dongle was introduced. It incorporated more functions onto a single chip than the Softrocks and hinted at the possibilities in a coming wave of USB based digital television and radio tuners. Eric Fry noticed, in early 2010 that certain DVB-T devices had special operating modes which could be exploited for reception modes other than digital television. A year later, Antti Palosaari developed the concept of using a generic DVB-T receiver as an inexpensive general coverage VHF / UHF receiver. Thus was born the "$20 SDR." It is an ante-upping game changer for entry-level and higly portable low power radios. This is a "black swan" event that can change radio.

Consider, for a moment, how the miniturization AND mass production of these small software defined radios can affect the activity of radio monitoring. Imagine what people will do with cheap and easy access to just about any radio signal between about 24 and 1700 MHz? This includes public services - police, fire, air traffic control, military, maritime, certain satellite based services including navigation, communication, and so forth. Some signals in the preceeding list will be encrypted; others merely digitally encoded. Amateur radio, weather, and most maritime services will be in the clear. With proper software, most of the signals received by these $20 SDRs can be demodulated / decoded / decrypted in real time. Other signals, protected by strong encryption, can be recorded and saved for future analysis. Don't laugh - there are people still analysing encrypted traffic from the second world war. DX listeners (and the NSA) can now record an entire band of RF spectrum and search for interesting signals at any later time.

#Advert: Supercharge your computing on systems and parts from Computer Upgrade King

Before reading further, make note that the RTL-SDRs are not mere miniature versions of tabletop or rack mount radios of the past. These dongles, like their other SDR cousins, take radio into the age of full-up digital processing. It is now possible to monitor an entire band and simultaneously decode EVERY signal that is a few decibels above the background noise! Better radios and software will push the limits until we are likewise pulling very very weak signals out of the noise as well.

Softrock SDR Radio
First came Softrock SDR Receiver...
Funcube Dongle SDR
Then the Funcube Dongle SDR Receiver...
RTL-SDR $20 SDR Radio
And now the RTL-SDR Receiver!

The devices in question, for this breed of software defined radios, use a Realtek RTL2832 quadrature sampling detector in combination with a programmable oscillator (most commonly an Elonics E4000, Fitipower FC0013, FC0012, FC2580, and R820T). Experiments indicate that these devices perform fairly well without any hardware modification, and the software (drivers, firmware, and user interfaces) is sophisticated. It was initially possible to tune a desired frequency, sample a chunk of spectrum, and write the data to a file readable by a conventional SDR program. For example, GNU Radio or HDSDR would be used to read the file and demodulate signals in a 2 MHz wide band of recorded spectrum. Recent generations of RTL-SDR compatible software can directly access the data stream providing excellent real-time multimode reception.

Elonics E4000 Quadrature Sampling Detector Diagram
Elonics E4000 Tuner / Quadrature Sampling Detector Diagram.

RTL-SDR $20 SDR Radio
Newer R820 Tuner Architecture.

The amateur radio community has worked fast on developing better software to operate the DVB-T radios and manipulate the resulting data. As of late April 2012, software such as GNU Radio or HDSDR can be used for reception of typical voice or digital modes plus esoteric things including encrypted voice. There are GNU Radio modules for P25, Mode-S transponders, ADS-B, GNSS, and INMARSAT downlinks.

Performance wise, the devices are pretty respectable. The specific tuning range available goes from about 60 MHZ to above 1700 MHZ using the best combination: an RTL2832 with the E4000 tuner. Devices with the R820 tuner go down to 24 MHz. Other tuners have different ranges and compatibility with available software. Dynamic range is limited mostly by oscillator noise and the 8 bit A/D converter. These are not debilitating limits! Most users should find performance good enough for local stations and perhaps a bit of farther / weaker stations. Basic amateur / public service / aircraft listening - even military satellite downlinks - should be easy on these little DVB-T radios.

RTL-SDRs on HF Bands

Hardware hackers have devised a method of using these RTL2832 SDRs for VLF through middle HF reception. Mikig and Dekar have prototyped a circuit in which the ADC is fed RF via "10/100" ethernet decoupling transformers. ADC pins 1 and 2 are fed with the output of a 1:2 transformer arrangement. The input side of the transformer is connected to a suitable antenna. Such a circuit provides sensitive reception up to around 7 MHz.

There has also been work on the software drivers to allow direct sampling the HF spectrum. The results are fair, but limited due to limits inherent in the dongles' design. The modified RTL2832 code enables reception up to 14.4 MHz. Newer devices with the R820T2 tuners may offer more complete coverage of HF frequencies with good sensitivity.

Full high frequency coverage with RTL-SDR hardware has been accomplished with the addition of an upconverter module. A very good surface mount upconverter has been created by Marty, KN0CK, which is small enough to fit inside the dongle enclosure. Opendous, with open source tools, created a high performance upconverter. These Ham it Up devices can be built from kits or purchased fully assembled from a number of suppliers.

RTL-SDR Improvement Tips

Here are some suggestions for improving performance of RTL2832 based SDRs:

  1. Reduce the SDR's internal gain to prevent noise due to front end overloading and intermodulation. Max gain = less sensitivity!
  2. Enclose the device in a grounded metal case.
  3. Use a good antenna designed for the range you will monitor.
  4. Eliminate feedline losses by mounting the SDR at the antenna feedpoint, with weatherproofing and a long USB cable to the computer. Better yet: use a microcomputer to run the RTL-SDR and connect to the network via a wireless link.
  5. Use a bandpass filter to protect the radio from strong out-of-band signals.
  6. Use a bandstop filter to block strong television or FM broadcast signals.
  7. Consider a quality preamplifier for the RTL-SDR to reduce the system noise figure.
  8. Filter the +5V supply to the radio. Use a combination of ferrite beads and bypass capacitors to target the full spectrum of noise.
  9. Put RF Chokes on the USB cable to filter out computer noise.
  10. Hope for the manufacture of DVB-T receivers with 16 bit A/D converters
  11. Software tricks, such as oversampling and decimation can help - watch for RTL2832 firmware and driver updates!

Filtering USB Cable Noise

The greatest source of noise in the RTL2832 based SDRs is the computer to which it is attached. The problem is not unique and is faced to varying degrees on other computerized radio or audio equipment. Use shielded USB cables when available, and add bypass capacitors between the +5V and GND lines. A combination of large values and smaller ones is best, for example 47 uf in parallel with .01 uf and .001 uf capacitors. In addition, several ferrite beads should be used along with running a few turns of cable on a large ferrite choke. Here is information on the USB connector pins and color codes:

RF noise reduction on USB cables - usb male
RF noise reduction on USB cables  - usb female
Pin Name Cable color Description
1 VCC Red +5 VDC
2 D- White Data -
3 D+ Green Data +
4 GND Black Ground

Filtering Strong FM Broadcast Stations

Strong FM broadcast stations can wreak havoc on weak signal reception on an RTL-SDR. Intermodulation with other strong signals can pollute a great deal of spectrum unless the strongest stations are notched with an effective filter. One simple filtering method is to connect a quarter wave coaxial cable to the antenna feedline, using a T connector. Keep the far end of the quarter wave coaxial stub open (not shorted), and it notches out signals around its design frequency. Here is the formula to calculate a quarter wavelength of coaxial cable:

Length (cm) = (7494 * V) / frequency (MHz)

frequency = 98 MHz
V = cable velocity factor = 0.80 for RG6 cable
Length = 61.2 cm

1) Always use quality low loss coaxial cable.
2) Connect the center conductor to the feedline center conductor.
3) Connect the coaxial cable shield to ground.
4) Keep the far end of the cable open (shield and center NOT connected together).

The filter works well. There have been instances of this kind of coaxial stub being soldered crudely to the receiver input, with the offending broadcaster dropping 20 dB and no longer causing intermodulation problems. Very deep notches can be made by using two or three stubs. The stubs should be separated from one another by a 1/2 wavelength section of coaxial cable. For a very nice graphic along with lab test analysis, see the HB9AMO Band Notch page.

Remote Mounting and Networking RTL-SDRs

Users of RTL-SDRs are getting top receive performance by adopting a client - server SDR architecture This refers, in practice, to remotely mounting the radio at the antenna, where it is connected to a microcomputer, which functions as a remote server. Long and lossy coaxial cable runs are eliminated this way. Instead, a long run of ethernet cable is used to provide power and carry data. In fact, the ethernet cable isn't required: one can link to the remote receiver via a broadband 802.11n link. Client - server architecture is a very good thing indeed, because it makes the receiver available to any user on the network. "On the network" means within a home or office intranet or globally via the internet. It is the way to bleeding edge multiuser / multimode operation.

For more information about using the Rasberry Pi with RTL-SDR devices (and downloadable system images), visit the Gareth Hayes website.

Windows Software for the RTL2832 SDRs

The top four windows applications for running these little SDRs are: HDSDR, SDR# (pronounced "SDR sharp"), Studio 1, and SDR-Radio (version 2).

SDR# is SDR sharp indeed! Automatically tuning peak signals in the VHF-Aeronautical band.

Linux Software for the RTL2832 SDRs

Linux is where to find the most advanced activity in the world of RTL-SDR radios. Quite a bit of development is going on, and it is a good thing to see advanced software coders creating fresh software for RTL-SDRs that works great. OsmoSDR and GQRX immediately come to mind as top notch RTL-SDR packages available for Linux computers.

Linrad works nicely with RTL-SDRs too! In fact, it uses slightly modified rtl-sdr library that makes better use of the hardware. Leif has an amusing screencap on his page depicting several RTL-SDRs operating simultaneously in Linrad. It is quite a powerful software package, with countless ways to tweak and adjust an SDR to bring in elusive signals.

CubicSDR is a lightweight and elegant RTL-SDR compatible package for Linux, Mac, and Windows computers. It is easy to use and does a fine job with AM, wide or narrow FM (mono or stereo), and SSB. One can even monitor multiple frequencies at once, even in different modes, within the RTL-SDR's bandwidth. Pre-compiled packages are available for download as is the CubicSDR source code. Read more about CubicSDR and how to install it from source code with a simple script.

GNU Radio is the bleeding edge of the bleeding edge. It is a software toolkit with components that can do just about anything. One can receive GPS signals and get timing, navigation fixes or both. One can receive beautifully clean FM stereo with RDS using advanced filtering and demodulating code. Other modules enable simple AM/SSB/CW reception. GQRX is a very nice all-around program for RTL-SDR listening, which uses GNU Radio as its foundation. GNU Radio is not easy to install, so it is suggested to use a ready-made live CD/DVD with everything already installed and configured. Here is a list of bootable live systems:

  1. Skywave Linux: It has QTRadio, CubicSDR, and Dump1090 installed, ready to run.
  2. Andy's Ham Radio Linux: GNU Radio with a well rounded collection for operating, contesting, etc.
  3. GNU Radio Live DVD: a distro directly from the GNU Radio people.
  4. Kali Linux: penetration testing with good GNU Radio support.
  5. QTRadio (ghpsdr3-alex) USB Image: Networked high performance SDRs, but no GNU Radio.

Each of the above live Linux systems operates very nicely when installed to a portable USB flash memory device. They also work very smoothly when installed to a computer's hard drive as the main system or part of a dual booting arrangement. Tools like Unetbootin can be used to easily install these to a flashdrive, which may then serve as the boot medium for any PC with a USB drive.

Be aware that Linux now includes a kernel module for RTL devices, named "dvb_usb_rtl28xxu" for people who actually use them to receive digital television signals. It conflicts with software used to operate RTL devices in SDR mode. To detect its presence, issue the following shell command:

~$ lsmod | grep rtl28xxu

To unload dvb_usb_rtl28xxu, issue use the rmmod command (as root or use sudo):

~$ sudo modprobe -r dvb_usb_rtl28xxu

Android RTL-SDR Applications

Yes, you can plug use RTL-SDR with a tablet or smart phone! Use an OTG Cable Adapter to connect your device to the RTL-SDR, and be aware that both devices are powered by the host device's battery. Surprisingly, battery drain and CPU speed do not limit smooth operation on newer devices with quad-core CPUs, though older phones may suffer choppy reception. Here are the currently available software packages capable of operating on the Android operating system:

  1. RF Analyzer (Free / Open Source)
  2. SDR Touch (Commercal / Closed Source)

RTL-SDR ADS-B Reception

A large and growing number of aeronautical radio listeners have been using RTL-SDRs to capture Automatic Dependent Surveillance signals on 1090 MHz. It is possible to monitor aircraft movement in an area and get other related data: winds and temperatures aloft, aircraft registration, position, mechanical condition, etc. Many stations using Windows use RTL1090 to receive ADS-B downlinks, and Planeplotter to process the data.

Planeplotter is very sophisticated software enabling position plotting multilateration, and networked / multisite / multiuser operation. You can use Planeplotter to track aircraft with computer generated video of the aircraft's path over any location. This slick animation includes a real-time depiction of the sun, moon, and stars in the background. For use on a Rasberry PI there is PI Aware software for easily sharing ADS-B data in the Flightaware service. Others are getting better performance using MalcomRobb's Dump1090, which has better DSP code for detting usable data from distant aircraft.

Linux users are enjoying excellent performance with the open source Dump1090 package, with the most advanced versions produced by Mutability and MalcomRobb. These differ somewhat in the manner of error reduction and handling of data after it is decoded. For more, see our tutorial on Installing Dump1090 in Linux Mint 17.1 and Siduction 2014.1.

Matthew Ernisse has posted some useful information on using a remotely mounted Rasberry PI for with Dump1090 for ADS-B aircraft tracking. He's also created software packages to simplify setting up the RPI for client-server operation.

RTL-SDR Ship Tracking

Tracking maritime traffic is accomplished similarly to that for aircraft, but use the Automatic Identification System (AIS). For ships, the relevant signals are on 161.975 MHz and 162.025 MHz. Ship Plotter is a popular tool used with SDR# or other Windows SDR applications.

Note: some of the more specialized signal decoders don't connect directly to the SDR, and require audio to be routed from the SDR to the decoding software. There are a few different methods to accomplish this. One method is to use a virtual audio routing cable, while another involves software tricks in Windows' stereo mix. In Linux, audio can be easily routed in Jack, Pulseaudio, and plain vanilla ALSA.

Simultaneous Multichannel Reception

Software defined radios can do special things which are impossible with analog radios. One such task is monitoring many (or ALL) channels in a particular band and providing output streams for each one. Skimmers, as they are called, exist for CW, RTTY, PSK-31 and other digital modes. More sophisticated skimmers are emerging for radio monitors, thanks to more proficient software coders focusing on digital signal processing.

RTLSDR-Airband is software capable of monitoring multiple channels at once and providing an audio stream of the communications on each channel. It is special because it is the first publicly available, open sourced, skimmer for voice communications. With RTLSDR-Airband, one may monitor up to eight frequencies all at once, missing nothing. One can pick frequencies with interesting traffic, monitor them all simultaneously, and also stream the audio worldwide. It doesn't even demand much processing power, using 4.5% per dongle on a Rasberry Pi v2. This is precisely suited for radio streaming sites such as Liveatc.net.

Use Better Hardware For Demanding Applications

Radio developers have taken note of the versatility of RTL-SDR devices and sought to design new devices with significantly improved performance. Most notable is the Airspy receiver. It uses an R820T2 tuner along with a 12 bit ADC and much cleaner clock oscillator. It is also possible to independently control the gain of the RF, mixer, and IF stages. Users of Airspy on Windows are enjoying the new performance improvements. Independent gain controls are actually possible in other RTL-SDRs, and may eventually appear in Linux and Mac software. The Airspy is a great radio, and with the latest refinements in firmware, is similar in performance to full sized, top of the line, superheterodyne equipment.

Another receiver which is a step above lagacy RTL-SDRs is the SDRplay. Currently up to version RSP2, it is a sophisticated, high performance radio covering spectrum from VLF through upper UHF frequencies. With the apropriate DSP software, it can receive and decode any sort of signals. Amateur DSN monitors are feeding their downconverters into SDRplay radios to receive signals from distant interplanetary probes. ADS-B monitors, SWLs, and others are making the RSPs a very popular choice of SDR hardware.

For applications requiring very high performance, one still cannot beat a GNU Radio with its USRP hardware or a commercially manufactured communications receiver, such as an Apache Labs (ANAN) SDR or QS1R Direct Sampling SDR. Bear in mind that the RTL2832 SDR is a very important development in software defined radio technology! It brings quite good general coverage receiving capability to a huge number of people in the world. There once was a time when radio experimenters and hobbyists depended on a small number of sources for quality equipment. Specialized radios for weather satellites, amateur radio, or trunked public service comms were expensive and difficult to get. With the $20 SDR, based on tiny DVB-T devices, millions of people have access to a workable radio with very broad capabilities. Experimenters, hobbyists, and professionals alike will find lots of uses for these little workhorses. For the latest developments, check the lively discussion in the Reddit.com RTLSDR pages and Superkuh's RTLSDR page.

Tags: RTL2832 Software Defined Radio, Pocket SDR, R820 SDR, RTL-SDR, E4000 SDR, Funcube Dongle

©2005 - 2020 AB9IL, All Rights Reserved.
About, Contact, Privacy Policy and Affiliate Disclosure, XML Sitemap.